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Stimulated microwave emission from EXB drifting electrons in slow-wave cavities occurs when the
Doppler-shifted radiation frequency is either near zero or the electron cyclotron frequency. The former
case, characterized by the synchronous drift velocity u, @ — ku ~0, corresponds to the “pure drift” insta-
bility, while the latter, satisfying o —ku ~=+(Q, is termed the “drift-cyclotron” mode. In both cases the
drift kinetic energy and momentum are invariant during radiative transitions. The momentum of the
emitted or absorbed radiation quantum comes from the vector potential associated with the static mag-
netic field and induces a shift of the electron guiding center in a direction transverse to the drift velocity.
In the pure drift case the radiation energy comes from the change in the electrostatic potential energy.
In the drift-cyclotron case both electrostatic and cyclotron rotation energies are converted into radia-
tion. In the nonrelativistic regime the gain is symmetric with respect to the frequency detuning from
resonance. The difference between the stimulated absorption and emission probabilities, responsible for
the gain, is caused by field gradients across the direction of the electron drift. These gradients come
from the waveguide mode structure and the collective field of the electron beam. The drift mode is al-
ways unstable, while there exists one stable and one unstable drift-cyclotron branch. Relativistic mass
effects infiuence only the drift-cyclotron instability, adding a gain contribution that is antisymmetric in
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frequency detuning.

PACS number(s): 52.75.Ms, 85.10.Jz, 42.52.+x, 42.55.—f

I. INTRODUCTION

The stimulated microwave emission from electrons un-
dergoing EXB drift in crossed electric and magnetic
fields is the physical principle underlying the operation of
magnetrons [1,2] and crossed-field amplifiers [3] (CFA’s),
the earliest developed sources for coherent microwave
generation. Magnetrons and CFA’s fall into a general
class of devices, including the electron cyclotron masers
[4] (ECM’s), the free electron lasers [5] (FEL’s), the
traveling-wave tubes, and their variations, operating by
stimulated emission from unbound electrons. The term
unbound electron devices (UED’s) is coined here to distin-
guish all the above from lasers and masers that are
powered by stimulated emission from electrons bound in
atomic or molecular orbitals, as well as to emphasize that
there can be no stimulated emission from electrons that
are free from external fields. Recall that a free electron
can only scatter a photon, but it cannot emit one since it
would violate energy-momentum conservation [6].

An important distinction in the frequency response
was soon realized among UED’s. The observed gain vs
frequency curve is symmetric relative to the resonant fre-
quency for the crossed-field devices [7,8], while it is an-
tisymmetric for all the rest. That behavior led to their
classification as M- and O-type devices, respectively. Re-
cent studies [9] and experiments [10] on the sheet beam
CFA showed that the symmetry in the gain vs frequency
curve is preserved in the nonlinear region. The classic in-
terpretation of this behavior [9] invokes the symmetry
characterizing the guiding center (GC) orbits in crossed-
field devices: the GC phase space is mirror symmetric
relative to opposite detunings +|Aw|. Nevertheless, a
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thorough understanding of the differences between M-
and O-type devices lies in the fundamental process of
photon emission and absorption and requires the quan-
tum treatment of the cross-field devices.

As in all situations involving lasing, microwave
amplification requires that at any instant there are more
radiation quanta being emitted than absorbed. One can
draw some additional differences here, first among con-
ventional lasers and UED’s in general and then among
crossed-field devices and the rest of the UED’s. In a con-
ventional laser the energy levels for bound electrons are

Eo

(a) (b)

FIG. 1. Energy level spacing between (a) discrete bound elec-
tron eigenstates and (b) an unbound electron, semicontinuoum
spectrum. An “inverted population” situation, where only one
energy state is occupied, does not necessarily lead to radiation
amplification in case (b).
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unevenly spaced and a photon of given frequency can
mediate transitions between only two given levels
E,—E,=%#w (excluding degeneracy), as shown in Fig.
1(a). Since the per-photon probabilities for stimulated
emission and absorption are the same and since an elec-
tron at the higher energy state can only fall into the lower
by emitting photons #iw, radiation amplification occurs
simply when the number of electrons in the higher energy
level exceeds that in the lower energy level. This is
known as population inversion. The gain is proportional
to the transition probability, thus the frequency response
is symmetric with maximum at the exact resonance.

On the other hand, the energy spectrum for unbound
electrons is typically a semicontinuous of equal energy
spacing, shown in Fig. 1(b). A given frequency photon
can in general induce transitions from a given energy lev-
el E, to either of the symmetric energy levels
E_ ,=E,*#%w above and below E;. Since there is equal
probability for stimulated transition into the lower or the
higher energy state by photon emission or absorption, re-
spectively, it appears that no amplification would occur
even in case of 100% ““population inversion” correspond-
ing to a monoenergetic electron cloud and that the radia-
tion would remain at the spontaneous emission level.
The differentiation between the emission and absorption
probabilities, which is necessary for net radiation gain, is
introduced by the electron recoil in FEL’s and the rela-
tivistic energy dependence of the cyclotron frequency in
ECM’s. Because of the recoil, a given energy and
momentum electron in a FEL absorbs a. frequency o,
that is slightly different than the emitted frequency w, by
the same electron, w, —w, =8w. Not surprisingly the ra-
diation gain is proportional to the frequency derivative of
the stimulated emission probability times dw, yielding the
antisymmetric gain curve [11].

In a crossed-field device, operating in the slow-wave re-
gime, the emitted photon energy stems from the
electron’s electrostatic potential energy. The emitted pho-
ton momentum comes from the electron’s canonical
momentum associated with the vector potential of the
magnetic field. The drift kinetic energy and momentum
remain invariant during the emission; instead of electron
recoil, a parallel displacement of the electron orbit
occurs. That is an essential departure compared to the
rest of the UED’s where the electron exchanges kinetic
energy, and kinematic momentum (FEL) or angular
momentum (ECM), with the emitted photons. It is
shown that the “recoilless” emission from the EXB drift-
ing electrons accounts for all the observed differences be-
tween M- and O-type devices on a fundamental level.
The necessary difference between the stimulated emission
and absorption probabilities is provided by electric field
gradients. Gradients exist in the rf amplitude due to
waveguide mode structure and are also produced by the
charge distribution of the drifting electrons.

There exist two modes of interaction (dispersion
branches) in a slow-wave cavity. In the “pure drift” in-
stability @ —ku ~0 cyclotron emission is inhibited, the
cyclotron rotation quantum number being frozen during
the radiative transition. The radiation gain is proportion-
al to the transverse shift in the GC location times the spa-
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tial derivative of the overlapping integral between the ini-
tial and the final states. Since emission and absorption
peak around the same frequency, the gain curve is sym-
metric in detuning. Net gain results from field gradients,
causing a stronger overlapping between initial and final
states during emission. Finite Larmor radius effects do
not enter directly the energy balance during the emission
or absorption of a radiation quantum. They manifest in-
directly through the collective space charge effects that
influence the local field gradients and thus the balance be-
tween emission and absorption rates. The gain curve of
the drift instability is invariant under relativistic effects
because the GC displacement is independent of ¥ and cy-
clotron transitions are prohibited.

In the drift-cyclotron branches o —ku ~=+|Q| the en-
ergy of the emitted quantum comes from both the elec-
trostatic and the cyclotron oscillation energy of the elec-
tron. The drift kinetic energy and momentum are still in-
variants of the motion, inducing again a GC shift perpen-
dicular to the drift direction. There is a distinction in the
stability properties between the fast cyclotron branch
w—ku =~|Q| and its slow counterpart o —ku ~—|Q|. In
the nonrelativistic regime the fast drift-cyclotron branch
is stable due to the negative effect of the cyclotron transi-
tions to the net emission probability. The nonrelativistic
gain curve remains symmetric in detuning. Relativistic
effects enter via the dependence of the cyclotron frequen-
cy on energy. The spacing between the cyclotron energy
levels becomes uneven, meaning that the stimulated emis-
sion and absorption probabilities peak at different radia-
tion frequencies. The relativistic correction to the gain,
proportional to the frequency derivative of the transition
probabilities, is thus antisymmetric in frequency and de-
stabilizing for Q,>w—ku. The slow drift-cyclotron
branch demonstrates the opposite stability properties
from the fast one.

It is worth noting that “pure cyclotron” emission at
w={), characterized by a null shift in the GC location
and no change in the electron potential energy, is prohi-
bited by momentum conservation. Since the expectation
value for the cyclotron oscillation momentum is zero in
all states and since the drift velocity u =cE /B, is in-
variant, the change in the electron momentum required
to balance the momentum of the emitted or absorbed ra-
diation can only come from the vector potential
ed,/c =mQX. The transverse shift of the guiding
center X is thus the trademark of emission by E X B drift-
ing electrons under all circumstances.

The remainder of this paper is organized as follows.
Section II introduces the quantum eigenstates of the un-
perturbed EXB motion combined with cyclotron gyra-
tion. It then goes on to compute the interaction with a
slow wave in the “pure drift” resonance. In Sec. IIT the
formalism expands to include the effects of the collective
electron field into the discussion. Only the laminar beam
field is included; the effects of the charge perturbations on
the cavity mode structure are neglected in the low gain
regime. Section IV elaborates and discusses the results of
Secs. IT and III. The “drift-cyclotron” interaction is tak-
en up in Sec. V by allowing transition with cyclotron
emission. The nonrelativistic case is analyzed first and
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the relativistic corrections are imposed by perturbative
expansion. The general results and conclusions are sum-
marized in Sec. VL.

II. STIMULATED EMISSION
FROM A SYNCHRONOUS BEAM

In this section we consider the interaction between
E XB drifting electrons and the waveguide modes in the
synchronous beam case w—ku ~0. The unperturbed
eigenmodes for drifting electrons are derived first from
Schrodinger’s equation. The interaction with the rf fields
is then turned on, inducing transitions between those
eigenstates. The stimulated emission and absorption
probabilities are finally obtained via time-dependent per-
turbation theory. Mutual interaction among electrons
(space charge field) is for the moment ignored.

Consider a single electron moving in uniform static
electric EgX=—VY, and magnetic ByZ=V X A fields
(Fig. 2). Taking V,=—eEyx and A=B x§ with the
canonical momentum P= —i#AV=p-+(e/c) A, the nonre-
lativistic Schrodinger’s equation is

2
- i-V2 +i ﬁﬂxi
2m

in2 = gy= = =

ot

Y, (1)

+ %mﬂzxz—eon

where & is the energy and Q=eB/mc is the electron cy-
clotron frequency. Since (1) is invariant along the drift
direction y, #, commutes with the canonical momentum
operator ?,; hence P,y=%qy and P(x,y)=ePp(x).
Substituting ¥ inside (1) and defining

u =§-(EqgXBy)/B}=—eE,/mQ 2)
as the drift velocity gives
¢n 7 42

iy = T

%m Qxx —X, ]qs,, ,
(3)

where &,=6+1mu’~#qu and X,=(%ig—mu)/mQ is

Cathode

FIG. 2. Simplified drawing of the dc and the ac fields inside a
magnetron-type slow-wave cavity. ac equipotentials are plotted
in a frame of reference moving at the wave phase velocity
o—ku =0, where the ac field appears as static.
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the guiding center location. The harmonic oscillator
equation (3) with energy spectrum &,=(n+1)%|Q| is
the quantum description of the cyclotron rotation about a
GC drifting along y. Thus, if |n,q ) symbolizes a drifting
electron eigenstate with quantum numbers n and g, its
wave function is

. —ié
'»bn,q(x’y;t)E(n’qu):‘ﬁn(x _’Yq)elqye ‘"t/ﬁ, 4
where ¢, is given in terms of Hermite func-
—1/4

tions ¢, (x)=a"V4exp(—x%/a)H,(x /Va) and
a=V# /2m Q1|. The conserved momentum P, =7g is the
sum of the GC kinematic and the vector potential

momentum
P,=fig=mu+mQX, (5)

following the definition Eq. (3) of the GC location. Note
that X, uniquely defines the momentum and vice versa,
henceforth dropping the subscript g. The total energy is

6,g=(n + L)% Q| +7igu — Lmu?
=(n+1Q|+1imu’—eE X . (6)

The first term on the right-hand side of (6) relates to the
Larmor radius via (n+1)%Q[=1m QX p2), while
smu 2—eE X are, respectively, the kinetic and the poten-
tial energies of the GC motion.

We now describe the interaction of the unbound elec-
tron eigenstates with the cavity radiation field. Adopting
the old quantum treatment, the cavity modes are given by
the classical solutions of Maxwell equations. For slow
wave cavities v /c << 1, where v is the phase velocity, the
radiation is sufficiently approximated by the ac potential

V(x,p,8)= LV sinh(kx)e o~ -
and the interaction Hamiltonian is
FHi=eV (x,y,t) . ®)

The per unit time transition probability between
|n,qg)—|n',q') is expressed by the well known Fermi

rule
(v’ |57 ma)

=~78(q'—q —k)8((n'—n)#| Q| +#(q' —q)u —#iw)

2
b))

One recognizes inside the 8 functions of (9) the energy-
momentum conservation laws: the change in the particle
total energy and canonical momentum equal the energy
and the momentum of a radiation quantum &, naq
= F+#iw and #iq’ ——ﬁq F #ik, where — (+) corresponds
to radiation emission (absorption). Let us now focus on
transitions between states of equal cyclotron energy
=n. Energy conservation using (6) yields

Erg—6ng=(q'—qWiu=—eEbX=F#o , (10

2
D g

dt _7{‘

eVl sinh(kx) 9)

x| (#g0)

while momentum conservation from (5) yields
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FIG. 3. Sketch of the transverse GC recoil due to momentum
conservation during stimulated (a) emission and (b) absorption.
Since the EXB velocity stays constant, the emitted radiation
momentum must come from the vector potential of the magnet-
ic field e4, /c =mQX; hence Ay =+fiw/eE,=t#k /m|Q|.

(@) (b)

#5q=mQ8X = F#ik . (11)

From (10) and (11) it follows that the radiative interac-
tion favors synchronous electrons of drift velocity
w—ku~0 . (12)

Conservation of the total momentum Eq. (11), requires
that the electron GC recoil by

#dq _
mQ

#ik fiw
+ =% .
m£ eE,

SX = (13)

The direction of this recoil is perpendicular to the direc-
tion of the drift u and across the magnetic field, as shown
in Fig. 3. The exchanged radiation momentum equals the
change in the canonical momentum &P,=mQ8X
=0(ed, /c) stemming from the GC displacement across
the vector potential. The exchanged radiation energy
equals the change in the electrostatic energy’ of the elec-
tron from the GC shift across the anode-cathode poten-
tial. ‘Stimulated emission in crossed E and B fields in-
volves changes in the electrostatic and the vector poten-
tials only. The kinematic energy and momentum remain
invariant during the transition.

Whether emitted radiation is amplified depends on the
relative strength between absorption and emission proba-

|

Wf;,lf A8, 18,) F AN, 16,0+ A'(,lrg,) F 4

sin?[(ku —w)t /2]
Ho—ku)/2]?

Here A=(eV,/2)sinh(kX), the prime denotes
differentiation with respect to the argument, and we have
omitted terms higher than A? and #2. The overlapping
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FIG. 4. Wave function ¢, (r) before (solid) and after (dashed)
transition. The state n =2 is used for illustration and r =x —X
is in units of V'#/2m|Q|. The broken line is the radiation am-
plitude profile in the vicinity of X (not to scale).

bilities. The per unit time change in the probability am-
plitude for emission or absorption X —X 18X is written
in terms of 8X=+1A with A=%w/eE,=%k/m|Q|u,
r=x—X,and r'=x —(XLtA)=rFA,

i

2ﬁ9V1 sinh[k (X +r)]

wi(t)=<¢,,(r¢A)

¢,,(r)>

Xe—i(m——ku)t i (14)
The terms in angular brackets on the right-hand side is
the overlapping integral between initial and final states,
illustrated in Fig. 4 for the n =2 cyclotron state. Expres-
sion (14) is computed by expanding ¢,(r +A)=¢,(r)
F(d¢,/dr)A+ - - and V,sinh(kx)=Vsinh(kX)
+kV, cosh(kX)r+ --- . We thus find the total probabil-
ity W3C(I)E|f(’)dt’wi(t')|2 for an electron transition in
the lower (upper) energy state after time ¢,

A Iro,)+ 458110, + A, 1%,

—

integrals {¢,|r¢,)=(4,|d,) =0 owing to the odd-even
symmetry of ¢,(—r)=(—1)"¢,(r) and its derivatives un-
der reflection. The remaining contribution is
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W:t:# AP+ AA47($,178,) F(A2YA(S,Irg,)

[(A 2 lrd, Y2 +24% 9.0, )

+A4474,16,)(8,r’¢,)]

sin?[(w—ku)t /2]
X .
Ho—ku)/2]?

It follows that the net emission probability W =W
— W _ is proportional to A,

(16)

W= —%15213( A2 (g, lre, )% (E)+OAY . A7)

The line shape function g on the right-hand side is
defined in terms of the phase slippage £, one-half the
product of the frequency detuning 8w =w—ku times the
transit time ¢,

n2

g<§)——;_5§, E=Lw—ku)t . (18)
Terms of the general form {¢'*|r™¢, ) are computed us-
ing the operator representation of d /dr and 7,

172
- |__n T
amial | @te)s
a _ 1o . | miik] _ 1
dar &’ 2% (@—a’),

aanda bem_g the Helsenberg operators with the proper-

ties a¢,=Vn ,_, and a'¢,=Vn +1¢,,,. Applying
(19) to the right-hand side of (17) one finds
(¢,|r¢,)=—1and

W=—ﬁ17A(A2)'g(§)+0(A3) : 20)

III. COLLECTIVE CHARGE EFFECTS

We have so far ignored the influence of the electrostat-
ic field of the charged electron layer. To take collective
beam field into account consider a monolayer of EXB
drifting electrons with GC initially located at X. Let the
charge density around X, p(r)=o|¥(r)|% be a Gaussian
of total surface charge density f drp=o, where
r =x —X as usual. The self-consistent dc potential from
d>V,/dr*=—4mp is written in a symmetrized form
about X as

Vo=—Eo(X +r)— dro f ar [ ' ‘et o)

where —eE (X +r) is the unperturbed potential. The
system wave function W is then a superposition of eigen-
states of various »’s,

172

1 e =3 & (1), 22)
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FIG. 5. Charge density and collective dc field around the
electron beam.

subject to 3, /c,|>*=1. In turn, the presence of the beam
field 8%V, defined by the integral in Eq. (21) and shown in
Fig. 5, modifies the drifting electron eigenstates and ei-
genvalues ¢, —@,, 6,—&,. These corrections will con-
tribute to the transition probabilities and the energy bal-
ance during emission or absorption.

Up to those point the space-charge thickness d has

_ been arbitrary. Two cases are amenable to analysis. One

may consider d either less than the quantum recoil A or
much larger that the “ground state Larmor radius”
(#/m|Q|)!”2. The narrow Gaussian limit d <A <(#/
m|Q])!”? has been examined elsewhere [12]. Though it is
a rather restrictive case, it nevertheless offers a transpar-
ent exposition of the underlying physics. Here we take
up the more general case d >>(#/m|Q|)!/2 > A.

Consider first the effect of the collective potential 8V,
on the drifting electron eigenstates. Since §V(r) is in-
dependent of y, the renormalized eigenfunctions are given
by ¥, ,(x,y)=e?§, (r), where

FHob, =(FHo+edVy)d,(r)=6E,8,(r) . 23)

In the small space-charge limit |o|/E, << 1 one may ob-
tain the perturbed quantities in terms of the vacuum
eigenstates via first-order stationary perturbation theory

(¢m leacvoi(ﬁn )

é,(r)=¢,(r)— ém(r), (24a)
mén Gm —gn
6,=6,+($,edV,l¢,) (24b)

The results of this computation are given by Egs. (A17)
and (A18) in Appendix A. Notice that ¢,(r) and &, now
depend on the GC location A=X'—X relative to the
beam center A=0.
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Now consider transitions among the above eigenstates
of Hy=H,+e8V,, induced by the interaction with the
wave H;=e%Y,. The total momentum conservation
along y is not affected by 8V, thus relation (13) for the

shift in the GC location still holds. The change in &
however, affects the energy conservation (10) into

n»

Gpg—6,,=86,(0)—8,(0)+#udg=Fho . (25

To compute &,(A)—&,(0) notice that the scale length d
for the potential 6%V, is much larger than the typical
wave function width (%/m|Q|)!/?, thus one may set
€8V~ —(eo /V'md)r? for the computation of the over-
lapping integrals in (24). It follows from (A17) and (A22)
that

= = _4meo A N

6,(A)—6,(0)= \/;dfz’ f=4. (26)
|

W.=g(&)3 lc,I? <$,,(r:FA) E%eVl sinh[k (X +r)]

$,,(r)>
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Substitution in the energy balance and use of (11) for 8¢
yields a quadratic for the GC recoil

imaw} A’—eE AT #io=0, 27)

defining the beam plasma frequency as w: =f(4meoc/
V'rmd). Thus the dc gradient introduces an asymmetry
in the GC jumps between emission and absorption,

o 1|t |'me;

p
eEO 2 eEo eEo ’ (28)

Aizj:

Because |A | <|A_| a stronger overlapping between ini-
tial and infal states occurs during emission than absorp-
tion, yielding additional contribution to the growth rate.
To compute the transition probability one repeats the
procedure of Sec. II using ¥ in lieu of ¢,. Only diagonal
terms in n =n’ are included in {W|eV|¥) to enforce the
no-cyclotron-emission constraint. The result

2
(29)

is the sum of the transition probabilities for each state times the initial probability of being in that state. The final task
is expressing {(&,(r FA)leV,|$,(r)) in terms of {¢,(r FA)leV,|$,(r)). The computation is performed in Appendix
B. In the low space charge limit 470 /E,, =co,2, /Q?% << 1 one finds, keeping terms up to second order in the small param-
eters A, 7, and f2=w}? /02,

eV,
N sinh[k (X +7)]

- eV, .
(d),,(r:FA) —2—s1nh[k(X+r)]

$n(r)>=<¢n(r:FA) ¢n(")>+ABi ,
(30)
B:=PB(n+12n+2+nXn—17].

The correction in the transition probability element from the self-field effects is independent of the GC shift A, during
the transition. Substituting (30) in (24) and repeating the expansion as after Eq. (14) yields

1

W= 7

S leal? |42+ 447, 1720, ) FAL(AY (4} Ir$,)

tg(£) . (31)

2
+%i—[(A’)2<¢;, rg, Y2 +24%¢19,) +447(8,16,)(,1r’¢,) 1 +24°,

The emission and absorption probabilities are changed by the same amount relative to the zero space-charge result, thus
the net emission will be independent of the last term B,. Using 3,lc,|*(¢,|¢,)=—(m|Q|/2%)3,|c,|*(2n
+1)=—(m|Q|/28)3,|c, %26, /41Q))=—(m/ #){(W|F|¥) and computing (W|F,|¥)=1[(#/2md?)
+mQ2d? /2] directly from W(r) given by (22), one obtains the net emission probability W=W_ —W_,

1 [Ac—A_ L AL—A2
p (A +—

# mQ3d?
(4'2—24> 2
2md? 2

W =
272

+44" 3 lc,|*(n+1)?
n

]t2g<§) . (32
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The first contribution from A, —A_~2A+0((0 /E,)*)
is similar to that in (20). In addition, there is a finite con-
tribution from the quadratic GC recoil term

A P—|A_J? #o® 4no
2*2'— 2
2 leal 2 2l g3 VB
o2 A
=—A—"— 33
uQ ’ 33

caused by the space-charge induced asymmetry in the
GC shifts for emission or absorption. The last term on
the right-hand side of (32) introduces finite Larmor ra-
dius effects, since 3,lc,|Xn +1)2={((mQp?/2#)*).
Combining (32) and (33) one finally has

2

-1 2y 1 A2 P08 2|1 m?Q*d?
W=r (AP A A2 | s
Q 2
—(AP—A4% [ 222 k() ]ﬂg(g).
2
(34)

IV. RADIATION GAIN

The per-cavity pass radiation gain G (¢), determined by
the number of photons emitted after a time equal to the
cavity transit time ¢t =L /u, is equal to the electron flux
(o /e)ub, b being the width of the beam, times the net
emission probability, times the emitted quantum 7w,

G(r)=i:—ub[W+—W_ Vo . (35)

Substituting W from Eq. (34) and taking the classical lim-
it i—0, only the leading-order terms independent of #
survive. In the “cold” beam case, implying a Larmor ra-
dius much smaller than the wavelength k?{p?)—0, one
obtains

Apzkzé nfl?) r¥1| sinb(kX)cosh(kX)
2
o —
+—E;-E—2—kd\/7rf sinh*(kX)
xw2t2g(§) . (36)

The first and the second terms on the right-hand side of
(36) reflect two effects that make the probability for
stimulated emission larger than stimulated absorption.
First, the rf field strength increases with X and thus
favors transitions shifting the GC upwards A >0. That
corresponds to electrons falling into lower potential ener-
gy state eAV,=—eE,A, <0 via radiation emission.
Second, the gradient of the dc field across the electron
beam charge causes a stronger initial-field state overlap-
ping during emission, given that the GC displacement is
smaller for stimulated emission than absorption,
A% «<1/E% <A «<1/E%.

The radiation gain is defined by G =AP /P, where the
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line).
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total radiation power flux in the cavity P is related to the
ac amplitude ¥V, via the cavity impedance Z by
P=V?2/2Z. 1t follows from Eq. (36) that

o eLZ |
_WT—T sinh(kx)cosh(kX)
mu
2
g o gy
+_}_2_0_ e kdV wf sinh*(kX)
Xw’t’g(E), 37

where G is expressed in terms of the beam current
I,=eobu using Zkb(ea /m|Q|)=(w/|Q| eI, Z / mu?).
Figure 6 shows the gain AP /P; vs frequency detuning &,
obtained from (37) over a cavity interaction length of 20
wavelengths for different space-charge densities. The
beam thickness is taken to be 5 of the radiation wave-
length kd =0.17. The other fixed parameters are Z =25
Q,b=1cm, kX =1, and u /c =0.0989, corresponding to
a dc electric field E,=14.84 kV/cm at B,=500 G. The
three curves correspond to beam currents I, equal to 2,
6.6, and 20 mA, respectively, yielding el, Z /mu? from
1X107% to 1X10™* and o /E, ratios from 4X107° to
4X10™* Note that the pure space-charge contribution
[the last term on the right-hand side of (37)] becomes im-
portant only when o /E,~ coth(kX)/V mkd.

The gain formula (37) agrees with recent results [13]
derived under the equivalent classical approach. The
gain is symmetric relative to the resonant frequency
wo=ku. Over short times (0—ku)t <<1, g(£)—t2 and
the radiation power increases as 72, independently of the
detuning Sw=w—ku. The gain depends on the trans-
verse gradients dV;/dX and o <dE/dX relative to the
wave propagation direction, the emission process being
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fundamentally two dimensional. Finite Larmor radius
effects do not enter directly the energy balance during the
emission of a quantum, but affect the local field gradient
dE,/dX and thus the balance between stimulated emis-
sion and absorption.

When emission takes place inside cavities with smooth
boundaries (diocotron mode limit) the rf profile is given
by exp( —k|x|)exp[i(ky —wt)] instead of (6). The rf field
E, is antisymmetric around the beam location X,
dV,/dX_+d%,/dX . =0, causing a null contribution
from the first term in (37). The instability is then trig-
gered by the second term from the space-charge effects.
It must be stressed that since smooth conductive wall
cavities do not support slow waves in vacuum, the latter
are supported thoroughly by the collective beam plasma
modes. In other words, one cannot neglect the ac field of
the beam charge perturbation, since it determines the
cavity dispersion w(k) and the mode structure.

The spectral broadening due to the finite “‘lifetimes” of
the interacting radiation and electron eigenstates is
obtained by multiplying (14) with e "T*/2, 1/T" being
the combined lifetime. The spectral density U (w) of
the emitted radiation from the integration
Jodre ™ W (1) —W_(0)]is

(0—ku)?
(0—ku)*+T? ~

For rf frequencies up to tetrahertz and for beam densities
yielding similar plasma frequencies, the spontaneous
emission and electron-electron collision effects are negli-
gible. The linewidth I' is determined by the inverse elec-
tron transit time I'; through the cavity length L and the
inverse cavity decay time w/Q, I' '=~w/Q+L /u. No-
tice the absence of thermal broadening due to velocity
spreads. Since the drift velocity u is determined by the
field strengths at the GC location X, any velocity spreads
among electrons injected at the same GC location must
be distributed in their cyclotron rotation velocities. In
quantum terms this translates into a spread over the os-
cillation quantum number n, Eq. (4). The radiation gain
(37) is independent of n and thus of thermal spreads.

In the classical treatment the gain is shown to be pro-
portional to the shift in the average GC location of the
injected electron cloud [9]. Consider again a monoener-
getic electron layer with GC located at x =X and uni-
formly distributed rf phases —7m<ky —wt <. In the
electron frame of reference w —ku =0 the cavity wave ap-
pears as a static potential; the axial ac field causes an
E,XB drift in the transverse direction, u,, =E;,/Q.
The change in the dc potential energy e AV,=v, eE At
equals the work done on the ac field uE |, At since the dc
drift velocity u and the cyclotron energy is constant. Ini-
tially equal numbers of electrons gain and lose energy and
the average upward GC displacement is equal to the
average downward displacement. Yet a finite amount of
energy is exchanged with the radiation, owing to the
jump in the dc field across the electron layer. Over
longer times an asymmetry develops in the average GC
shift as electrons moving towards the area of higher rf
field strength are accelerated, while electrons shifting to-

Ulw) = (38)
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wards the lower rf field strength are decelerated. The
finite shift in the beam center of charge produces a finite
energy loss to radiation, even without counting space-
charge effects in the dc field.

It is often stated in plasma theory texts that electrons
emit or absorb radiation depending on whether they
move above or below the wave phase velocity, respective-
ly. That is sometimes misinterpreted as if supersynchro-
nous (subsynchronous) electrons can only emit (absorb)
radiation; that statement is at odds with the symmetric
crossed-field device (CFD) gain, which implies that elec-
trons emit regardless to their velocity relative to the
wave. The correct statement is that electrons both emit
and absorb regardless of their relative velocity and that
under given circumstances the number of quanta emitted
may exceed the number of quanta absorbed by a given
electron, causing radiation gain, and vice versa. In most
UED’s the electron recoil makes the emission (absorp-
tion) probability higher for electrons above (below) the
wave velocity. In CFD’s the balance between emission
and absorption is not determined by the EXB velocity;
the transverse recoil combined with the transverse field
gradient causes higher emission rate for all electrons.

V. DRIFT-CYCLOTRON EMISSION

Finally, we consider the effects of cyclotron emission
for a monoenergetic drifting beam, by allowing radiative
transitions between different oscillator states &n==1.
The energy levels during transitions are sketched in Fig.
7. The energy-momentum balance gives the new selec-
tion rules

#5q =mQ5X = Fik (39)
86=TF#|Q|+#udg= F#|Q| —eEydX = F#n . (40)

Accordingly, emission or absorption now occurs when
the Doppler-shifted radiation frequency matches the elec-
tron cyclotron frequency

o—ku =|Q| (41)
and is again accompanies by a GC shift X =+A

(a) (b)

FIG. 7. Energy exchange in the drift-cyclotron emission (fast
branch). (a) An increment of electrostatic energy plus a cyclo-
tron rotation quantum are converted into an emitted radiation
quantum. (b) The inverse takes place during absorption.
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_ flo—|0) _ . #ik

F ) 42
+A oE, (42)

mQ

The drift kinetic energy and momentum are conserved
during transitions. The rate of change of the transition
probability amplitude between initial and final states is
now given by

1

W:t——gz‘ A<¢n¢1|¢n>$AA(¢;¢ll¢n>+A’(¢n¢1|r¢n)

F A5 ilrd, )+ A5 (B2l )+ Bl )

Here the phase slippage is expressed in terms of the de-
tuning 8w =w—ku —|Q| by
E=Yo—ku—|Q|) . (45)

Again, applying the odd-even properties of ¢, reduces
(44) to

W:t=;1{{ AN 54l6, )2+ (AP, 5,|rd, )

F2A4A4'A(¢, 5116, (B,51lrd,)}1%8(&) .
(46)
Computation of the elements
(b1l ) =VmIQ[/28(~V 18, _, ,+Vn +18,,1,)
and
($ns1lrdn >=‘/_me[(‘/;8n—l,n +Vm5n+1,n)
yields the net gain

:l _i_ 2V A 7\2 ﬁ
w ’72‘ 2 (A A=A 5
—AZM% t2g(&) . @7

The first term on the right-hand side of (47) comes from
the GC shift and is similar but of opposite sign to the ear-
lier results without cyclotron emission. Pure cyclotron
emission effects are expressed by the second term in (47),
while the third term carries the cross coupling of the GC
shift and the cyclotron emission. All terms in (47) con-
tribute to net absorption of radiation at any frequency
mismatch. A nonrelativistic beam near the drift-
cyclotron resonance is stable, as opposed to the pure drift
resonance instability. This happens because the final
electron eigenstate is not only shifted in space by A, but
also changes to a different eigenfunction ¢, —¢, ; ;, caus-
ing the absorption probability to exceed emission. The
reader will recall that nonrelativistic electron cyclotron
interaction without the E X B drift also results in a radia-
tion damping (it is always assumed that the radiation am-
plitude is strong enough so that spontaneous emission is
negligible compared to the stimulated emission or absorp-
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wi<r>=<¢n¢1<r¢m

i .
Eﬁ—eVl sinh[k (X +7)]

¢,,(r)>

Xe—i(w—ku—|ﬂl)t . (43)
Repeating the gain computation with (43) in lieu of (14)
and neglecting space-charge effects, one finds

2
2
A t2%() .  (44)

tion).

One must introduce relativistic effects to recover a con-
tribution similar to the wusual cyclotron instability.
Neglecting electron spin, the relativistic drifting particle
Hamiltonian is

2 21172
~ P P,.—eAd, /c
FHo=mc? |1+ [—nﬁ] + % —eEyx
(HoteEyx)*
zﬂo——ﬂz—z"—+mc2 : (48)
mc

where 7, is the nonrelativistic operator (1). We remain-
ing the slow-wave region u /c <<1, retaining relativistic
effects in the transverse motion (cyclotron oscillation).
The relativistic energy spectrum (minus the rest energy),
computed in Appendix C, is given by

~ (n + 140
Gpg=(n+L1|Q| |1 ————— | +Higu —imu? .
mc

(49)

According to (49), the relativistic oscillator spectrum is
given by 6, =(n +%)ﬁ|ﬂn |, where the relativistic cyclo-
tron frequency depends on the energy quantum number
n,

(n + 140

Q,=0Q 3

n

(50)

2mc

The shift in the cyclotron frequency modifies the wave-
particle resonance condition. The energy conservation
during transitions dictates that maximum emission or ab-
sorption probabilities occur at different frequencies

(n+1)|0|#A #Q2
=ku+|Q| |1—
P+ ol 2mc? 2mc?
2
=ku+|Q,|F h02 : 51
2mc

The phase slippage is now given by £=1(o—ku—|Q,|
F#HQ?/2mc?)t =E, F#Q°%t /4mc?, where &,=Hw—ku
— |ﬁn |)t. Thus relativistic effects in the balance between
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emission and absorption manifest in two ways: the cyclo-
tron frequency is replaced by its relativistic value Q——»Q.
and an additional gain contribution results from the

difference in the line shape factors g(&)—g(&,
F#0% /4mc?). Expanding
J
1 #02 r
W=w{Q,+— —=-
ﬁZ 2m C 2 agn {

*AA'A((¢;,—1I¢n>(¢n~1lr¢n

The first term after the equal 51gn is given by the rlght-
hand side of Eq. (47) with Q in place of Q and &, in
place of £&. The large term in curly brackets comes from
the shift between the absorption and emission line shapes
and reduces to

# #Q?

(n+1) ML L %

1| 20mlQl 2 B
A°A +(A4’ ) me? 2 OE,

P 2% 2mlQ]
(53)

The relativistic gain contribution depends on the oscilla-
tion number n, i.e., the cyclotron rotation energy. The
factor dg /9§, is antisymmetric in detuning and destabil-
izing (g /&, >0) for |, | >w—ku. The combination of
(46) and (53) and the use of the definitions of 4 and A’
finally leads, in the classical limit #—0, to

AP=kb—47 | m % ——é—[sinh(kX)+cosh(kX)]2g(§,,)
+ %[ sinh?(kX)+cosh?(kX)]
_ Ma_g 2,2
R et vl CLARICT
The gain is then
© el,Z
G: __—1 —_
|Q| mu?
X |— %[ sinh(kX)+cosh(kX)%g (£, )
+ %[ sinh?(kX)+ cosh?(kX)]
100t 9g | 2.2
Xy, =5 ok (55)

Formula (55) gives the drift-cyclotron gain in a slow-wave
cavity for relativistic electrons of “perpendicular”
Yo—1=(n +%)ﬁ92/mc2. It is the counterpart of Eq.
(37) for the pure drift gain. Collective space-charge
effects have been neglected in the drift-cyclotron treat-
ment.

Figure 8 shows the gain AP /P; vs frequency detuning

1]
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#Q%t dg #Q%t
4mc? of, 4mc?

and repeating the transition probability computation of
the preceding paragraph one finds

g &, T =g(§,)F

AZAZ((¢:1—1|¢n )2+<¢:1+1|¢n >2)+(A,)2((¢n—l|r¢n >2+<¢n+1|r¢n >2)

)= 1116, 2, 11lre, 1)} . (52)

r

for interaction length of 30 wavelengths, el,Z/mu?*
=1X10"*for I, =20 mA, and various 7,. The resonant
frequency o0=|Q|/[1—u /vp(@)] from Eq. (41) corre-
sponds to w=1.5/Q| when u/v,=uk/0=%. For
7. — 1=0 there is net absorption everywhere in the spec-
trum (solid line). At y,—1=10"2 there is a small effect
on the gain symmetry, yet the gain remains predominant-
ly negative. At y,—1=10"" the destabilizing relativistic
term dominates and strong gain results for |Q, | > o —ku.
From the balance of terms inside (55) one finds the insta-
bility condition
2 g _ K 1

|Q,|t 0g /3, |Q,|t cotE—1/€°
where K =[ sinh(kX)+cosh(kX)]?/[ sinh?(kX)

+cosh?(kX)] and coté—1/£>0. A given y, determines
the unstable range of frequencies via (56); for strong gain

Ya—1>K (56)

FIG. 8. Fast branch drift-cyclotron gain vs detuning
E=(o—ku—|Q|)L/2u for y—1=3X10"* (solid line),
¥ —1=3X1073 (short-dashed line), and y —1=3X10"2 (long-
dashed line). The normalized beam current el,Z/mu? is
15X 10~ * and the resonant frequency is 1.5 times the cyclotron.
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one must destabilize frequencies near the maximum of
0g /9& in Eq. (55), which occurs at £=~1.303. Letting
£~1.3 and for kX=1 one obtains from (56)
¥,—120.373/|Q,[t=0.373/ 0t (1—u /v,). For typical
cavity lengths over ten rf periods and for u/v,=~1, the
threshold in y,, — 1 turns out to be less than 10~ [‘7

While the drift-cyclotron case depends strongly on rel-
ativistic effects, the pure drift instability, discussed in
Secs. III-1V, is insensitive to relativistic effects. The GC
shift A given by (28) is independent of the relativistic fac-
tor y since ma)f, and m Q) are relativistically invariant.
The gain in (37) is relativistically invariant.

So far we treated the process where a decrement of the
electrostatic potential energy plus a cyclotron quantum
are converted into a radiation quantum during emission.
It is also possible to have an interaction where the decre-
ment in the electrostatic energy is split between the emit-
ted radiation quantum and an absorbed oscillation quan-
tum, as in Fig. 9. Here the electrostatic energy is partly
converted into radiation and partly going into increasing
the cyclotron rotation energy. The analog of the energy
conservation equation (40) during emission or absorption
now is

86=1#|Q|+7%udqg=1#|Q| —eEydX = Fhw . (57)

Accordingly, radiative transitions occur when

o=ku—|Q| (58)
accompanied by a GC shift 8X ==+A
lo+|Q]) _ . #ik
tA=+ =7 :
A eEO mﬂ (59)

The various interaction modes of a drifting electron beam
in a slow-wave cavity are shown in Fig. 10. The intersec-
tions of the resonance curve (58) with the waveguide
dispersion relation w(k) generally correspond to phase
velocities lower than (41). Hence (58) characterizes the
slow drift-cyclotron branch, as opposed to the fast
branch, Eq. (41), discussed earlier in this section.

The slow branch gain is found by observing that the
new transition elements for emission and absorption, re-

A
___________ =
n+2 2
»o eEgh a2
net S ~ [ [—
[ J P O mmmm - S (P S — o--
n-1 -
ne2 Ao
n-2 eEgA o~ n2__
[T PR
L]

(a) (b)

FIG. 9. Energy exchange in the drift-cyclotron emission
(slow branch). (a) An increment of electrostatic energy minus
an absorbed cyclotron quantum is converted into an emitted ra-
diation quantum. (b) The inverse takes place during absorption.
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FIG. 10. Slow cavity mode amplification by EXB drifting
beams. Possible operation points are located near the intersec-
tions of the magnetron, drift-cyclotron, and slow drift-cyclotron
resonances with the cavity dispersion w(k) (only the first Bril-
louin zone of the latter is shown).

spectively involving n +1 and n —1 as final states, are
found by exchanging n +1—>n=*1 in (43). Hence

G=|2+1

10

%[ sinh(kX)+cosh(kX) Pg(£, )

— %[ sinh?(kX)+cosh?(kX)]

10|t ag w2

X(Y,—1)—F— 2 o,

(60)

The cyclotron emission contributions enter the gain with
reversed sign relative to (55). Thus the nonrelativistic,
slow drift-cyclotron branch is always unstable, in con-
trast to the stability of its fast counterpart. The relativis-
tic contribution, proportional to dg (£, )/3§,, is antisym-
metric relative to the detuning dw=w—ku+|Q,| and
stabilizing when |{,| > ku —o. Figure 11 shows the gain
AP /P; vs frequency detumng for interaction length of 30
wavelengths, el,Z /mu*=2X10"° for I,=4mA, and

various 7,. The resonant frequency o=|Q|/[u/v,(w)
—1] from Eq. (58) corresponds to w=4|Q| for
u/v,=uk/w0=3%. For y,—1=0 there is instability

everywhere in the spectrum (solid line). For
¥,—1=107"! (long-dashed line) there is a relativistic sta-
bilization of some frequencies in the range |Q, | > ku —o

VI. CONCLUSIONS

Microwave amplification by stimulated emission from
E X B drifting electrons in slow-wave cavities can occur
when the Doppler shifted wave frequency o — ku is either
near zero or near the cyclotron frequency. The synchro-
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FIG. 11. Slow branch drift-cyclotron gain vs detuning
E=(o—ku+|Q|)L/2u for y—1=3X10"* (solid line),
¥ —1=3X1073 (short-dashed line), and y —1=3X 1072 (long-
dashed line). The normalized beam current el,Z/mu? is
2X 1073 and the resonant frequency is 4 times the cyclotron.

nous beam case w —ku ~0, termed the pure drift instabil-
ity, is always unstable to microwave growth. This insta-
bility is underlying the magnetron operation where the
synchronism is referred to as the Buneman-Hartree con-
dition. The gain is symmetric in respect to the detuning
|8w|=|w—ku| and independent of the cyclotron energy.
The energy and the momentum of the emitted radiation
come from the changes in the electrostatic potential and
vector potential of the electrons, associated with the
external electric and magnetic field. The electron drift
kinetic and cyclotron energies are invariant during the
radiative transitions. The GC recoil is perpendicular to
the direction of emission. The gain is expressed via a
general initial-final transition probability amplitude
w=% '(¢,leV,|d,), where the slow-wave ac potential
YV (x,y,t) can assume the structure appropriate to any
waveguide, not necessarily limited to (7). If Fis the num-
ber flux of electrons in a sheet beam of surface charge
density o passing through X, the small amplitude gain
formula is

w

1
- W
ax?

G=FZ >

A

g(&)w . (61)

d|w)|? dA?
oX tle do

The first term on the right-hand side is proportional to
the recoil distance, times the spatial derivative of w?
stemming from the transverse gradients in the ac field
strengths. Collective space-charge effects carried be the
second term are proportional to the asymmetry in the
GC shift caused by the dc field gradients. Formula (61)
does not depend on the relativistic factor ¥ since cyclo-
tron emission is frozen during the process and A turns

out relativistically invariant. Finite Larmor radius effects
manifest indirectly, via the collective fields; the cyclotron
radius affects the charge distribution o and the local field
gradients about the GC location.

In the drift-cyclotron resonance w—ku =~=+|Q|, the
emitted radiation energy comes from the shift in the elec-
tron GC location and the change in the cyclotron radia-
tion energy. The drift kinetic energy and momentum are
still invariant during transitions. Two cases occur: a
subsynchronous beam interacting with the fast branch
v(0)>u=w/k —|Q|/k and a supersynchronous beam
with the slow branch v,(0)<u=w/k +|Q|/k. In the
nonrelativistic region (n +1)%Q|/mc?—0 the gain

remains symmetric relative to the detuning
dw=w—ku F |Q| and of the general form
2
dw dw?
= — A2 |2 oW [ _ 1,2
G=FZ |—A ax A aX lw?| |g(&)Viw . (62)

Here the probability amplitude is of the general form
w=% ¢,+,1eV,|¢,) and involves transitions between
cyclotron states. The nonrelativistic fast branch, involv-
ing emission of a cyclotron quantum, turns out stable (the
absorption probability of an oscillation quantum exceeds
that for emission). The slow branch, involving absorp-
tion of a cyclotron quantum during radiation emission, is
unstable. Neglecting space-charge effects the gain is in-
dependent of the Larmor radius (i.e., quantum number
n); it is the same for warm beams n70 and cold beams
n =0.

When the cyclotron rotation energy is in the relativis-
tic range a new contribution arises in the gain from the
dependence of the cyclotron rotation frequency on energy
Q-0 no

G=Fz | —a2 |2 © | g,
- n aX n aX w g gn (0]
2
w ag(&,)
+FZ |w2+A2 8—Xn y( n—l)%%ﬁw .

(63)

The relativistic contribution from the second term in
large square brackets is antisymmetric in detuning. Rela-
tivistic effects are destabilizing for the fast branch (stabil-
izing for the slow branch) in the range |Q,,| >w—ku.
Note that in the relativistic case the gain depends explic-
itly on the cyclotron energy. The growth rate in that case
is affected by the spread in the injected electron energies
(beam “‘temperature”). When the relativistic effects dom-
inate, the familiar form of the electron cyclotron maser
antisymmetric gain curve shape emerges.

So far, to the best of the author’s knowledge, the
operation of the crossed-field microwave devices has been
based exclusively in the pure drift instability v —ku =0
(the Buneman-Hartree condition). Despite the high
efficiencies achieved in magnetrons note that the energy
stored into the cyclotron motion remains untapped.
Classical nonlinear gain computations show that it is the
Larmor radius that sets the upper limit in the efficiency
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n=1—2p/D, where D is the anode-cathode spacing. The
efficiency is thus limited considerably in cases with highly
cycloidal electron orbits, as, for example, during secon-
dary or thermionic emission from the cathode. Opera-
tion in the fast drift-cyclotron branch converts both elec-
trostatic and cyclotron energies into radiation and should
increase efficiency in mildly relativistic magnetrons. Des-
tabilization of the fast cyclotron branch would require
typical cyclotron energies of ¢, —1 less than 0.1.

The slow drift-cyclotron branch is unstable at arbitrary
low y. For given drift velocity u, a crossed-field amplifier
operating at the slow branch can achieve higher frequen-
cies than the usual fast branch. A price will be paid in
efficiency since part of the released electrostatic energy is
channeled into increasing the cyclotron rotation energy.

A final note is in order, concerning emission at drift-
cyclotron harmonics w—ku==I|Q|, where [ >2. This
case is of interest because it allows higher frequency gen-
eration

10|
Iu/v (0)—1]|

for given EXB velocity u. The amplitude of the transi-
tion probability is again proportional to
w=# Yo, eV d,). It can be shown that the only
gain contributions that survive in the classical limit #—0
scale as (kp,)?. Thus excitation of drift-cyclotron har-
monics is significant only when the Larmor radius is
comparable to the wavelength. The analysis in this paper
focused on the “cold-beam” cases where the Larmor ra-
dius, though finite, remained much smaller than the
wavelength (kp,)<<1. Finite Larmor radius effects
~(kp,)? can be neglected for /=+1; the gain for the
fundamental drift-cyclotron branches, given by Egs. (37)
and (55), is dominated by the contributions from the GC
shift A during transitions.
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APPENDIX A: SPACE CHARGE EFFECTS
ON DRIFTING ELECTRON EIGENSTATES

The dc field resulting from the beam charge affects the
electron eigenfunctions and energy eigenvalues. When
the space charge is so small as to be negligible the drifting
electron wave functions are eigenstates of the operator

F oy =6 (A1)

where the energy is expressed in terms of the “good” (i.e.,

na¥ng »

&, (A)=

6,+(,(r)edV,le,(r)) +A2{{,(r)|edV,ld,(r)) + 1) (r)|edV,|d,(r)) +1{s,(r
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conserved) quantum numbers as

6,q=(n +L)AQ +figu — Lmu? . (A2)

The eigenvalue equation for drifting electrons including
the action of the beam self-field is

HWng=Cng¥nq (A3)
where
FHo=Fyt+edV,, (A4)
8Vo=—dmo [ar ["dr|w(r")2
— A0 [ap [Tarre=otia, (AS)

\/ﬂ'd

and r =x —X is the distance from the beam center X.
Since 6V, is independent of y, only the x dependence of ¥
is affected by space-charge effects

U, (x,y)=e?¢, (x), (A6)
where
A L 0% esy, |5.=8.8. . (AD)
T om a2 0 nPn

In the small space-charge limit the perturbed &, and &,
are obtained from the unperturbed &, and ¢,, solutions
of Eq. (2), via stationary perturbation theory. The pic-
ture of EXB drifting electrons oscillating about some
GC location X’ is retained, but now the wave function
structure around X' and the oscillator energy are both
affected by the location of X' relative to the injected
beam center X. Since emission or absorption shifts the
guiding center by A=X'—X one must allow the per-
turbed eigenstates to depend on A as well,

b, (r'=x —X")=¢,(r+X —X')=¢,(r FA) (A8)

The perturbative expansion up to first order in 8V, is
$,(rFA)=¢,(rFA)

(B (r FA)edVylo, (r FA))

m¥*n 6’"_6"
X, (rFA),
(A9)
6,=6,+(d,(rFA)edV,ylp,(r FA)) . (A10)

Expanding ¢,(r FA)=¢,(r) F¢,A+¢./(A2/2) and using
the odd-even symmetry properties of ¢, () and its deriva-
tives under reflection »— —r, as well as the fact the 6§V
is even in r, it follows that

)edVole(r))} , (A1l
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~ o, (r FA)
S, (rFA)=¢,rFA)— 3T

3 Tm—nh0 (@ (r)[e8V|6,(r)) FAL($,(r)|edV|d,(r) F (&, (r)|edVld,(r))]

+——[(¢ (r)|edVyle, (r))+2(8,,(r)]edV,l¢,(r)

+(¢,, (1 |edVldn(r)] | . (A12)

Because the scale length d of the potential 8V, is taken much longer than the typical wave function “size”

d >V #/2m () one may approximate
4o /2
Vad

inside the overlapping integrals (A11) and (A12). Expressing r in terms of the ladder operators a and a' of Eq. (13)
yields

edVy=~—e (A13)

($n(P)r?l,(r))= (¢,,,(r)|(a +aT)2|¢,,(r))“ a [n(n—1)8,, ,—,+(n+1)(n+2)8, ,1,+8,,1,
(A14)
ﬁ 1/2
(B (NP2, (1)) + b, (1) P2 (r)) = ‘ml (¢, (Na’—a)a +a"P+(a+a")a—ah)p,(r)
5 172
=\2ma [—Q2n+1WVns,, ,—1—(2n+30Vn 8, 1], (A15)
2 ________ _ 2 — AT
(o, (P|r2e,(r) Sl 2% (¢, (M@’ —a)a +a"(a—ah)lg,(r)
=L{[n?+n(n—1)—(n +1)n+2)18,, ,+2Vn(n —1)8,, ,_,+2V(n +1)(n +2)8,, , 1>
—\/(n FD)(n +2)(n +3)(n +4)8,, , 14+ Vn(n —1)(n —2)(n —3)8,, ,_4} , (A16)
" 2 — —\2 2
(b (PP, (1)) = 2y Q 2ﬁ <¢,,,(r)|<a a(a+a"?¢,(r)

={[n(n—1)+(n+1)n+2)—(2n +1)2]8m’,,—4v nin—18,, ,_,—4V(n+1)(n+2)8, ,.,

+V(n +1)(n +2)(n +3)(n +4)8,, , 14—V n(n —1)(n —2)(n —3)8,, , 4} - (A17)
Substituting (A13) into (A11) and (A 12) and using the results (A 14)—-(A17) for the various expectation values yields
4meo (2n+ 1A _ 4meo \,n’+2n(n—1)—(Q2n +1)

G )= T am Vad 4 ’ (A18)
- 4
b, (rFA)=0,(rFA)— ‘/;anoﬂzé[(n+1)(n+2)¢,,+2(r$A)—n(n—1)¢,,_2(r¢A)]
172
4reo #
j:‘/;d e m[ Qn+1)Wne¢, _(r+2n+3)Vn ¢, (r)]

2
—%—Z—ﬁ—ﬂwnm T, (1) —VTn T1n T2)8, 1 5(r)

+ 1V (n —1(n —2)(n —3)¢, _o(P)— 1V (n + 1)(n +2)(n +3)(n +4)$, 4 4(r)} , (A19)

[
The wave function correction in (A19) will be used in the  tend beyond d for n large. To make up for the overesti-
transition probability computation. The last term in mate one may use the ensemble averaged value
(A18), coming from — (¢’ |r?|¢, ) — (. |r?|¢,), overes- » ) )
timates the energy shift at large n. The approximation 2 |c RICALSUSEST QL)
YV, < r? fails above r >d, where the potential asymptotes
to a linear increase (Fig. 5) and the eigenfunctions ¢, ex- =(W'|r2|W )+ (" [r2| V), (A20)
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independently of n. Direct computation of (A20) using
(22) for W(r) yields

[7 arr?(wv+vrw]
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APPENDIX B: TRANSITION PROBABILITY
COMPUTATION INCLUDING
COLLECTIVE FIELD EFFECTS

The transition probability, given by Eq. (29), involves
overlapping between initial and final states of the general

=%[‘P'\I/r2—(‘1/2)’r]3° form
dre—r/d = ~(?A)—eV1 inh[k (X +7r)]|6,(r) (B1)
Wrdf re 2. (A21) bnlr 5 sinh[ N1 |é.(r)),
. where ¢, (r) are the modified by the space-charge oscilla-
Thus, from (A18), one arrives at tor wave functions. According to (A14) one may set
5 ~
B(a)=¢,—2rce 2 T ineo p B, fea $n(N=0,(r)+84,(r) , (B2)
md m md where, defining the beam plasma frequency as
(A22) =f(4meo /V'wmd) and B=w} /Q?,
J
8¢,,(r)———[(n +1)(n+2)¢, o (r)—n(n—1)$, _,(r
ml| 172
+B 7 A[—2n+1)WVn ¢, _(N+Q2n+3Vn o, . ,(r)]
A g, () —VrF T D, P+ 1V (n —1)n —2)n —3)¢
47Q n—alr
=V (n+D(n+2)(n +3)(n +4)p, . 4(r)} . (B3)

To keep terms up to second order in the small parameters A, B, and r <d inside the transition elements (B1) one can
discard terms O (A?) on the right-hand side of (B3). Combining (B1) and (B3) then yields

Vi
sinh[k (X +7r)]

<$n(r$A)

=<¢,,(r¢A)

Eﬁ,,(r)>

eV, .
T smh[k(X +r)]

¢,,(r)>

eV, .
N sinh[k (X +7)]

B
+£ |<¢,,(r:FA)

14
+<[(n +1)(n +2)$, 4, (r FA)—n(n—1)$, _,(r FA)] Iez—lsinh[k(X +7)]

m|Q|

+BA p

[<¢,,(r:FA) i

— V
—+—<[(2n +3Vn, (rFA)—Q2n+1)Vn ¢,_(rFA)] ‘eT] sinh[k (X +7)]

2
+%<[(n F1)(n+2)8, o(r FA)

- eV, .
—n(n—1)p, _,(rFA)] 5 sinh[k (X +7)]

[(n+1)n+2)p, o (r

—n(n— 1)¢,,_2(r)]>

8,(1)) ]

L sinh[k (X +7)] ‘[(2;1 +3)0VH ¢, 411 —(2n +1)\/;¢n¢1(r)]>

¢,,(r)> }

[(n+1)(n +2)¢n+2(r)-n(n—1)¢n_2(r)]>. (B4)
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The first term on the right-hand side of (B4) is the transition probability for the unperturbed (vacuum) eigenstates and
has been computed in Sec. II. The additional contributions on the right-hand side of (B4) are expanded according to

FAB{(n+1)(n +2)[{¢,| 4l¢, 1)+, 4l¢, 12)1—n(n —1D)[{¢,] 4|6, _,)+(,| 4l¢, )]}
+B{(n +1)(n +2)(,| 4'rl$, ;) —n(n —1){¢,| A'rl¢, 1)}

172
m|Q|

FBA P

{_(zn +1)‘/;[<¢n|Al¢n—l>+<¢n~]l‘4|¢n)]+(2n +3)‘/_’;[(¢n|A|¢n+1>+<¢n+2|A|¢n >]}

+B2{(n +1)n +2)d, 1, 4l¢, 1) +nin =14, ,| 4l$, )}
—n(n—1)(n+1)n+2)Xd, 1,1 4ld, ) —n(n—1)n+1)n+2){¢, _,l4l¢,1,) , (BS)

where, as usual, A4 =(eV,;/2)sinhX and the prime
denotes differentiation with respect to the argument. Ap-
plying the selection rules inside (B5) and substituting the
surviving terms back into (B4) yields

_ _ eVl T
<¢,,(r+A) Tsinh[k(X +r)] ¢n(r)>

— eV,
:<¢n(r+A) - sinh[k (X +7)] ¢,,(r)>

+B2A[(n +1)2(n+2)+n%n—1)]. (B6)

The correction in the transition probability element from
the self-field effects is independent of the GC shift A,
during the transition. Both the total emission and the to-
tal absorption probability are changed by the same
amount

BAS le,lfn+1Hn+22+n¥n—17] (BT

n=0

relative to the zero space-charge result Eq. (14). Thus the
net emission probability W, — W _ is still given (16) us-
ing different A, for emission or absorption. The space-
charge influence enters through the GC shift: because of
the self-field |A, |#|A_|. This causes an additional con-
tribution to the emission probability from the quadratic
difference A% — A2 70, Eq. (32).

APPENDIX C:
RELATIVISTIC ENERGY SPECTRUM

The lowest-order expansion of the relativistic drifting

electron Hamiltonian is |

1
2mc

g,,’q=mc2+é’,,’q+ 3

2 21172
A~ P P.—(e/c)A
H=mc? |1+ —X—J 4+ | =2 +eV,
mc mc
1 2
e
:;mcz+m PX+ P,——4, }—-eon
2 2712
_ me? f"_ P,—(e/c)4,
8 mc mc
5 F+eEyx]?
=mc +7{————2 , (C1)
2mc

where # is the nonrelativistic operator Eq. (1) and
YV,=—Ex. The energy eigenvalues of (C1) are given by
first-order perturbation

~ H+eE x]?
8 [ e;,]

nq

=me?+6,,~ (8, b)), ©

2mce

where the classic contribution is given by (6)

6 g =(n +1)A|Q| +igu — tmu? . (C3)
The perturbative correction is written as
FH+eE,x]?
[ > L - | Ha+2eEox H+e Edx?
2mce 2mc
7 Eo p (C4)
om x|

where use was made of the commutation relation
P.x —xP,=—i# in the computation of
(eEy/2m)[P2x +xP2)=(eE,/2m)[2xP}—2i#P,]. Us-
ing (C4) inside (C2) yields

[a%,,q+zeEoén,q<¢,,|xl¢,,>+e2E3<¢,.|x2|¢n>—me—,ﬁi<¢nlpxl¢,,> j

2 1 2 202
=mec +6"’q+;r;c7 6hqte E02m9(2n+1) , (C5)
where use was made of ¢, |x|$, ) =(4,|P,|$,)=0. Expanding 6%, from (C3) and rearranging terms
~ 2 )2
8,y =me?+iqu—tmu+(n + DAlQ| |1 (n + 1) FOL Aau || gu —mu’/2) (C6)
’ 2mc mc 2mc

Retaining relativistic corrections in the cyclotron oscillation energy n, neglecting terms proportional to u?/c? in the
slow-wave region u /c << 1, and subtracting mc? yields Eq. (49).
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